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Most previous sample size calculations for case-control studies to detect genetic associations with disease assumed that the
disease gene locus is known, whereas, in fact, markers are used. We calculated sample sizes for unmatched case-control and
sibling case-control studies to detect an association between a biallelic marker and a disease governed by a putative biallelic
disease locus. Required sample sizes increase with increasing discrepancy between the marker and disease allele
frequencies, and with less-than-maximal linkage disequilibrium between the marker and disease alleles. Qualitatively
similar results were found for studies of parent offspring triads based on the transmission disequilibrium test (Abel and
Müller-Myhsok, 1998, Am. J. Hum. Genet. 63:664–667; Tu and Whittemore, 1999, Am. J. Hum. Genet. 64:641–649). We also
studied other factors affecting required sample size, including attributable risk for the disease allele, inheritance
mechanism, disease prevalence, and for sibling case-control designs, extragenetic familial aggregation of disease
and recombination. The large sample-size requirements represent a formidable challenge to studies of this type.
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INTRODUCTION

The proper use of association studies to identify
disease-related genes is a topic of active research.
Association studies based on marker alleles in
linkage disequilibrium with a disease-producing
allele have been proposed for fine-scale mapping
in a region thought to contain a disease gene
[Thompson et al., 1988; Olson and Wijsman, 1994;
Kaplan and Morris, 2001]. We call such marker
alleles ‘‘markers’’, to distinguish them from
putative disease-causing alleles at disease loci,
sometimes called ‘‘candidate genes’’, ‘‘liability
genes’’, or ’’disease genes’’. Association studies
based on markers have also been proposed as a
means of screening the entire genome [Risch and
Merikangas, 1996; Kruglyak, 1999], though serious
questions have been raised about the feasibility of
this approach for complex diseases [Weiss and
Terwilliger, 2000].

Despite the substantial work that has been
carried out to assess the power and sample size
requirements for association tests based on mar-
kers, including work on the transmission disequi-
librium test [TDT; Abel and Müller-Myhsok, 1998;
Tu and Whittemore, 1999], there remains a gap in
this literature for genotype-based tests in case-
control studies with population-based unrelated
controls and for family-based case-control studies.
Lange and Laird [2002a] gave power calculations
for a wide range of family-based designs based on
genotypes of disease alleles, but not markers.
Olson and Wijsman [1994] computed power for
marker genotype-based tests with population-
based case-control designs, in which it was
assumed that the genotype of the disease gene
could be inferred from the phenotypes of the cases
and controls. This assumption would not apply to
complex diseases. Kaplan and Morris [2001]
investigated the power of association tests using
a marker allele-based chi-square test statistic for
unrelated cases and controls. This test statistic, as
they pointed out, is not robust to departures from
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Hardy-Weinberg equilibrium caused by inbreed-
ing [see also Sasienei, 1997]. Schaid and Rowland
[1998] discussed the power of score tests for
association studies for candidate loci (but not
markers) for case-control studies with several
choices of family-based controls as well as
independent controls. Slager and Schaid [2001]
studied the power of the Armitage test for trend,
based on the genotypes of a disease gene in
unrelated cases and controls. The use of such two-
sided trend tests was recommended for whole-
genome scans based on biallelic markers such as
single-nucleotide polymorphisms (SNPs) [Devlin
and Roeder, 1999]. As this test is genotype-based,
it is robust to allelic correlations induced by
inbreeding, but not necessarily to population
stratification or other types of confounding. We
extend this work by calculating sample sizes and
power to assess marker-disease associations for
the trend test when the marker is in linkage
disequilibrium with the disease gene. We also
assess the power of genotype-based tests with
markers when sibling controls, instead of popula-
tion controls, are used. Such tests, though less
efficient than tests based on unrelated cases and
controls [Witte et al., 1999; Slager and Schaid,
2001], are robust to population stratification.

STATISTICAL METHODS

SAMPLE SIZES FOR INDEPENDENT CASES
AND CONTROLS

Following the notation in Slager and Schaid [2001],
we assume a random sample of R cases and S un-
related controls. Let the biallelic marker have
genotypes aa, aA, and AA, and define a random
variable M ¼ 0, 1, 2, which corresponds to the
numbers of A alleles in the marker genotype. The
case-control data can then be summarized in a 2� 3
table, where the columns correspond to genotype,
M, and the rows to disease status, Y (see Table I).
Let X(M ¼ i)¼Xi be a score associated with

marker genotype M ¼ i, for i ¼ 0, 1, 2. If A were
a disease gene, rather than a marker, the Xi

would be the efficient scores for testing b ¼ 0

in the model logit P(Y ¼ 1|M ¼ i)¼m+bXi

[Armitage, 1955]. For example, the additive scores
Xi ¼ i, recommended by Devlin and Roeder
[1999], would be efficient if the logit increased
linearly with the number of alleles A. Dominant
(Xi ¼ 1 if i ¼ 1 or 2, and 0 otherwise) or recessive
(Xi ¼ 1 if i ¼ 2, and 0 otherwise) scores could be
used as well. We use the scores that are efficient
for disease genes but emphasize additive scores
for markers for reasons explained later.
The Armitage score statistic for b¼0 that tests

for a trend in proportions is U ¼ X0[(1 � f)r � fs],
where f ¼ R/N is the proportion of cases in the
case-control study with N ¼ R + S. The vector of
scores is X0¼(X0, X1, X2), and the genotype counts
for cases and controls, r0¼ (r0, r1, r2) and s0¼(s0, s1,
s2), follow independent multinomial distributions
with indices R and S and respective probabilities
p0¼(p0, p1, p2) and q0¼(q0, q1, q2), where pi ¼ P(M ¼
i|Y ¼ 1) and Pi ¼ P(M ¼ i|Y ¼ 0). Alternatively,
U can be written as

U ¼
X2
i¼0

Xi

N
½Sri � Rsi�: ð1Þ

The variance of U is V ¼ Var(U)¼(1�f)2RX0SpX +
f2SX0SqX, where Sp denotes the correlation matrix
for the genotype counts for the cases with (Sp)ii ¼
pi(1 � pi) and (Sik)¼�pipk, and Sq is defined
analogously for the controls. Under the null
hypothesis, H0, that pi ¼ qi, i¼ 0, 1, 2, a valid
estimate of V is the pooled variance estimate,
obtained by using Sp ¼ Sq ¼ S with estimates
p̂p ¼ q̂q ¼ n=N; where n ¼ (n0, n1, n2) is the vector of
total counts in Table I. To be explicit,

V̂V0 ¼dVarVarU ¼ Nfð1� fÞX0�̂�X

¼RS

N

X2
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X2
i

ni
N

1� ni
N
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For an alternative hypothesis, H1, in which
piaqi for some i ¼ 0, 1, 2, the asymptotic power of

the two-sided trend test jUV̂V
�1
2

0 j4z1�a=2 can be

expressed in terms of EH1
U=N;s21 ¼ VarðUÞ and

the limit of V̂V0=N under H1, denoted by s2�; as

PðjUV̂V
�1
2

0 j4z1�a=2Þ ¼ 1� Fðz1�a=2s�=

s1 �
ffiffiffiffi
N

p
EH1

U=s1Þ þ Fðz1�a=2s�=

s1 �
ffiffiffiffi
N

p
EH1

U=s1Þ;

ð2Þ

where F stands for the standard normal distribu-
tion function and z1�a ¼ F�1ð1� aÞ:

TABLE I. Genotype Counts for Cases and Controls

M¼0 M¼1 M¼2

Cases (Y ¼ 1) r0 r1 r2 R
Controls (Y ¼ 0) s0 s1 s2 S

Total counts n0 n1 n2 N
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COMPUTATION OF THE MOMENTS OF TEST
STATISTIC UNDER H1

Taking expectations of U under the alternative
yields EH1

U ¼
P2

i¼0
XiRS
N ½pi � qi�; and

lim
N

EH1
V̂V0=N ¼ fð1� fÞ

X2
i¼0

X2
i ðfpi � ð1� fÞqi

ð1� fpi � ð1� fÞqiÞ � fð1� fÞ
XX

iaj

XiXj

� ðfpi þ ð1� fÞqiÞðfpj þ ð1� fÞqjÞ ð3Þ
The calculation of pi ¼ P(M ¼ i|Y ¼ 1) and qi ¼
P(M ¼ i|Y ¼ 0) depends on the extent of linkage
disequilibrium between the marker locus and the
disease locus and on the disease penetrance for
the disease gene. Assume that the disease locus,
like the marker locus, is biallelic, with G denoting
the disease-causing allele and g the wild-type
allele. Denote the penetrances for the disease
genotype by fk ¼ P(Y ¼ 1|D ¼ k), for k ¼ 0, 1, 2,
where D ¼ k corresponds to the genotype contain-
ing k disease-causing alleles. If the marker has no
effect on the probability of disease given D, i.e.,
P(Y ¼ 1|D,M)¼P(Y ¼ 1|D), the probabilities are

pi ¼PðM ¼ ijY ¼ 1Þ ¼ PðM ¼ i;Y ¼ 1Þ
PðY ¼ 1Þ

¼
P

kfkPðM ¼ i;D ¼ kÞP
kPðD ¼ kÞ ; i ¼ 0; 1; 2:

The calculations for the qi’s for the controls are
analogous, with the penetrances fi replaced by
(1�fi). The joint genotype probabilities, P(M,D),
for the two-locus biallelic model can be found as
functions of the wild-type allele frequencies pa
and pg, and the linkage disequilibrium coefficient,
d ¼ P(ag) � papg. Here P(ag) is the probability
that a randomly selected haplotype carries both
wild-type alleles. For a homozygote wild-type,
for example, the genotype probability is P(aagg)¼
(papg+d)

2. A complete list of genotype probabilities
for a two-locus Mendelian model can be found in
Khoury et al. [1993, Table 8-5, p. 257]. Note that pa
is the frequency of the wild-type allele at the
disease locus, and 1 � Pg the frequency of the
disease-producing allele, G. In the special case
when the marker is the disease gene, equation (3)
yields pi ¼ fiP(D ¼ i)/

P
fk P(D ¼ k) and qi ¼ (1 �

fi)P(D ¼ i)/
P

ð1� fkÞ P(D ¼ k), as in Slager and
Schaid [2001].
The null hypothesis H0: p ¼ q is true if either the

disease gene imparts no added risk, i.e., f0¼f1¼f2,
or if the marker is in linkage equilibrium with the
disease gene, i.e., d ¼ 0, in which case P(M ¼ i,

D ¼ k)¼P(M ¼ i)P(D ¼ k). In both situations, no
association or linkage equilibrium, (3) reduces to
pi ¼ qi ¼ P(M ¼ i).
The power and sample size for the Armitage

trend test therefore depend on the allele frequen-
cies at the marker and disease locus, the pene-
trances for the disease gene, and the amount of
linkage disequilibrium. In Results, we present
numerical studies and simulations to describe the
dependence of the power on those parameters.

SAMPLE SIZES FOR THE SIBLING
CASE-CONTROL DESIGN

The Armitage trend test assumes a random
sample of cases and controls, all of which are
independent of each other. Many designs for
association tests are based on family data in
which phenotypes are correlated within family.
Here, we investigate the power of a marker-based
test for the sibling case-control design.
Let Xij(D) denote the score for the jth sibling of

the ith sibship associated with the genotype D ¼ 0,
1, or 2 based on a biallelic disease gene. We
assume that the penetrance function for the
disease gene for the jth sibling of the ith sibship
follows a logistic model

log itðpijÞ log itPðYij ¼ 1jzj;XijÞ

¼ mþ szzi þ bXD
ij ð4Þ

where Yij denotes the disease status, XD
ij ¼ XðDijÞ

is the score associated with marker genotype Dij,
and zi is a random familial effect for the ith family
with E(zi)¼0 and Var(zi)¼1, which is independent
of the genetic effects.
We assume a sample of N discordant sib pairs

satisfying Yi: ¼
P2

j¼1 Yij ¼ 1: Note that in distinc-
tion to the previous section, the total sample size is
2N. The log-likelihood under model (4), condi-
tional on Yi ¼ 1, for N sibships is

LðY1; . . . ;YN; bÞ

¼
XN
i¼1

b
X2
j¼1

YijX
D
ij � ln

X2
j¼1

expðbYijX
D
ij Þ

8<
:

9=
;

2
4

3
5
ð5Þ

and the corresponding score test for b ¼ 0 is

U ¼
XN
i¼1

Ui �
XN
i¼1

XD
il Yi1 �

1

2

� �
þ XD

i2 Yi2 �
1

2

� �� �
:

ð6Þ
For the marker, we use (6) with XD

ij replaced by XM
ij

as in the unrelated case-control design. Only
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siblings with different genotypes contribute to the
conditional likelihood (5). Under the null hypoth-
esis d ¼ 0, and regardless of the extent of linkage
between the marker and the disease locus, XM

ij
is independent of Yij, for j ¼ 1, 2. Thus the
expectation of U is zero when d ¼ 0. To
standardize U, we use the empirical variance
estimate

V̂V0 ¼ N=ðN � 1Þ
XN
i¼1

ðUi � �UUÞ2 ð7Þ

where �UU ¼ U=N: Note that V̂V0 is a valid variance
estimate even in the presence of residual correla-
tion between sibs due to linkage (the recombina-
tion fraction yo 1/2) between the marker and the
disease locus, as the independent unit is the
sibship. In the presence of linkage, a standard
model-based variance estimate for the score test
that assumes y ¼ 1/2 can underestimate the true
variance, inflating the size of the test. Siegmund et
al. [2000] proposed a Wald test with a sandwich
variance estimate to avoid this problem when
testing for association in sibships. Using calcula-
tions in the Appendix, we show how to compute
the power of the test jUV̂V�1=2

0 j4z1�a=2 from
equation (2) for arbitrary values of d, y, and the
penetrance parameters.
The quantities U and V can be generalized to

sibships with k affected and l unaffecected sibs
by considering conditional logistic regression
obtained from k : l matching. The corresponding
sample size calculations become quite involved,
however, as the joint distribution of multiple
genotypes and markers is required (see Appendix).

COMMENTS AND EXTENSIONS

Solving equation (2) as a function of N for a
chosen power yields the required sample size. We
use a very good closed-form approximation for
the sample size, derived by discarding the last
term in equation (2). This results in

N ¼ ðz1�a=2s� þ z1�bs1Þ2=ðEH1
UÞ2 ð8Þ

where 1�b denotes the chosen power. This
formula can also be used to approximate the
change in sample size needed to accommodate a
more stringent a level. If one were interested, for
example, in a genome-wide association scan, a* ¼
5 � 10�8 has been suggested by several authors
as an appropriate choice, and the corresponding
sample size N� ¼ Nðz1�a�=2s� þ z1�bs1Þ2=ðz1�a=2s�þ
z1�bs1Þ2 � Nðz1�a�=2 þ z1�bÞ2=ðz1�a=2 þ z1�bÞ2: For
example, with a power of 80%, using a* ¼

5 � 10�8 instead of a ¼ 0.05 requires increasing
the sample size by a factor of (5.33 + 0.84)2/(1.96 +
0.84)2¼4.9.
Equation (8) can also be used to approximate

the dependence of the sample size on d. If s*¼ s1
for small d, then by using a Taylor expansion
around d ¼ 0, we get

N �ðz1�a=2 þ z1�bÞ2ðs21ð0Þ þ ds2
0

1 ð0ÞÞ=ðEH1
Uð0Þ

þ dEH1
Uð0Þ0Þ2:

As EH1
U¼0 if d ¼ 0, we have

N � ðz1�a=2 þ z1�bÞ2s21ð0Þ þ s21ð0ÞÞ=d2ðEH1
Uð0Þ0Þ2

þOð1=dÞ:
The sample size thus varies with d�2 for small d.
We assess the accuracy of this approximation in
Results.
Because one will not in general know which

marker allele, A or a, is in positive linkage
disequilibrium with a putative disease allele G, it
is desirable to choose a set of scores such that the
test statistic is invariant to the choice of which
allele is the ’’marker allele’’. The additive scores
X¼[0, 1, 2] satisfy this criterion, but dominant
scores X¼[0, 1, 1] or recessive scores X¼[0, 0, 1] do
not. For this reason, we shall study the power of
the test based on additive scores more extensively,
and also consider the sample size that it would
require when a dominant or recessive model
holds. The additive scores correspond to additiv-
ity of the logit of the penetrance. For small
penetrances, additivity on the logistic scale corre-
sponds approximately to multiplicative pene-
trances, f0; f1 ¼ f0eb; f2 ¼ f0e2b:

RESULTS

PARAMETERS FOR SAMPLE SIZE
CALCULATIONS

The amount of linkage disequilibrium, d, de-
pends on the allele frequencies at both loci in the
population. To facilitate comparison between
different situations, we follow Tu and Whittemore
[1999] and use a standardized version of d,
denoted by D0; that was introduced by Lewontin
[1964]:

D0 ¼ d=minðpGpa; pgpaÞ; d40
d=minðpgpA; pGpAÞ; do0

�
where the denominator is the absolute maximum
d that could be achieved given the allele frequen-
cies. The values of D0 range from –1 to 1. In our
simulations and computations, we restrict D0 to be
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positive. We use level a¼0.05 and power 0.80
throughout. We also fix the attributable risk for
genetic effects, AR, defined as AR¼1 – f0/P(Y¼1),
and the disease prevalence P(Y¼1) in the popula-
tion to determine parameters in the logistic
models and pg.

INDEPENDENT CASES AND
CONTROLS

We study the sample sizes required for additive
scores when additive, dominant, or recessive
models hold (Figs. 1–4), for reasons explained
above. The penetrances for the disease locus are
modeled using a logistic regression model as P(Y
¼ 1|D)¼exp(m+ bXi)/(1 – exp(m + bXi)), where Xi

¼ X(D ¼ i) denotes the score for the disease
genotype D. Because we set X0¼0 for all models,
fixing AR and P(Y ¼ 1) allows us to obtain m for
the underlying true inheritance model by solving
f0¼exp(m)/(1 – exp(m))¼(1 – AR)P(Y ¼ 1). We study
the alternative b ¼ 1. The allele frequency of the

wild-type allele at the disease locus, pg, is found
from solving PðY ¼ 1Þ ¼ f0p2g þ 2ð1� pgÞpgf1 þ
f2ð1� pgÞ2:
Figures 1–4 plot N against 100D0; the logarithm

of the percent of maximum linkage disequili-
brium, on the log10 scale for various choices of
marker allele frequencies pa. Figures 1–4 corre-
spond respectively to (AR, P(Y ¼ 1))¼(0.3, 0.01),
(0.3, 0.1), (0.1, 0.01), and (0.1, 0.1).
Four factors dominate the variation in required

sample sizes seen in Figures 1–4: (1) the degree of
discordance between pg and pa, which determines
the maximal linkage disequilibrium, 100D0; 2) the
percentage of maximal linkage disequilibrium;
3) the attributable risk (AR); and 4) the mode of
transmission.
Figure 1 illustrates the importance of discor-

dance between pg and pa. For each inheritance
model, the plots run nearly parallel, and the
vertical displacements represent the effects of
mismatching allele frequencies. For example, in
the dominant model, pg ¼ 0.86 matches pa ¼ 0.8
well, whereas the locus with pa ¼ 0.5 requires
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Fig. 1. Required total number of cases and controls (on a log10 scale) plotted against log10 (100D
0) for various inheritance models and

marker allele frequencies. The two-sided 0.05 level test statistic is based on additive scores, and has power of 0.8. Prevalences of disease
allele and wild-type penetrance are determined by conditions AR ¼ 0.3 and disease prevalence¼0.01.
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about sixfold larger samples, and the locus with
pa ¼ 0.2 requires about tenfold larger samples. The
effects of mismatched allele frequencies are
similar for the additive model, but not as extreme
as for the recessive model. Table II illustrates the
effect of mismatched allele frequencies on sample
size requirements for the settings in Figures 1–4
for D0 ¼ 1 by comparison with the sample size
required for the disease gene. Even when the
allele frequency of the marker is close to that of
the disease allele, as in the case of an additive
model with AR ¼ 0.3, P(Y ¼ 1)¼0.1, pg ¼ 0.8586,
and pa ¼ 0.8, the sample size required for the
marker is 37% larger than for the disease locus. In
all other situations, the required sample size
increases are even bigger.
The effect of the percent maximal linkage

disequilibrium is also large (Figs. 1–4). Indeed,
the ratio of the required sample size with 100D0 ¼
30%; compared to 100D0 ¼ 100%; is about 10 for
all the loci in Figures 1–4.
To assess the approximation that the required

sample size varies inversely with d2 [see also Risch

and Teng, 1998], we calculate the slopes in Figures
1–4. The slopes range from �1.90 to �2.04, in
reasonable agreement with –2 given by the
approximation.
Comparing Figures 3 and 4 with Figures 1 and

2, one sees that larger samples are required to
detect genetic factors with smaller attributable
risks, but disease prevalence has relatively little
impact. Mode of transmission also affects sample
size, especially in the presence of substantial
mismatch between pg and pa for AR ¼ 0.3. For
AR ¼ 0.1 with substantial mismatch, recessive
inheritance requires smaller samples than domi-
nant inheritance, whereas for AR ¼ 0.3 and good
matching between pg and pa, recessive inheritance
requires larger samples.
We also calculated required sample sizes using

additive, dominant, and recessive scores, respec-
tively, for additive, dominant, and recessive
modes of inheritance and under the unrealistic
assumption that one knew which marker allele
was in positive linkage disequilibrium with the
disease allele. These scores would be optimal if
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Fig. 2. As in Figure 1, except AR ¼ 0.3 and disease prevalence¼0.1.
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the marker allele was exactly the disease allele, or
if pa ¼ pg and D0 ¼ 1: We calculated how much
efficiency is lost by using additive scores when, in
fact, dominant (recessive) scores were optimal by
computing the ratio of sample sizes required with
additive scores to that required by dominant
(recessive) scores when the inheritance model
was dominant (recessive) (Table III). For dominant
inheritance, the additive scores only require at
most 11% larger samples than dominant scores.
This occurs, as expected, when there is substantial
linkage disequilibrium. With weak linkage dis-
equilibrium, additive scores for the marker may
require 67% smaller sample sizes than dominant
scores. Thus scores that are optimal for the disease
allele are not necessarily efficient for the marker.
Similar comments apply to recessive inheritance,
except that additive scores can require up to 44%
larger samples with tight linkage disequilibrium,
or about 60% smaller samples with weak linkage
disequilibrium. Unreported plots for the domi-
nant and recessive scores yield similar qualitative
conclusions as in Figures 1–4, except that the
slopes are not all near –2.

THE SIBLING CASE-CONTROL DESIGN

The calculations for m and pg for the sibling case-
control design are more complex, as the model
also includes the normally distributed random
intercept, zi, to account for residual correlation in
the ith sib pair. In addition to the AR, and disease
prevalence, we fixed the value of s2z : We solved
the equations f0 ¼ ð1� ARÞPðY ¼ 1Þ ¼

R
expðmþ zÞ=

ð1� expðmþ zÞÞdFðzÞ numerically for m, using
Gaussian quadrature for the integrations, in
MATLAB 6.1 [Mathworks, Inc., 1999]. Then we
solved for pg by fixing P(Y ¼ 1), as above. Again,
the alternative hypothesis we studied was b ¼ 1.
The second additional parameter that enters the

model for the sibling case-control design is the
recombination fraction y, that lessens the degree of
linkage disequilibrium that can be obtained. The
sample-size requirements to achieve 80% power
increase by about 4% for y ¼ 0.01 compared to
y ¼ 0 for all choices of linkage disequilibrium and
all genetic models in Figures 1–4. For y ¼ 0.1, on
the other hand, the impact on sample size is
substantial. For example, for pa ¼ 0.8 and s2z ¼ 0;
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Fig. 3. As in Figure 1, except AR ¼ 0.1 and disease prevalence¼0.01.
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the sample-size requirements to achieve 80%
power increase by 50% for all choices of linkage
disequilibrium and all genetic models, compared
to y¼ 0. However, as substantial linkage disequi-
librium rarely extends beyond 100 kilobases,
values of y larger than 0.01, which corresponds to
approximately 1,000 kilobases, need not be con-
sidered.

Residual correlation has a comparably small
effect in this model. When s2z is changed from zero
to one, with y¼ 0, the sample sizes required to gua-
rantee 80% power increase by 1–3%, depending on
the underlying model and marker allele frequency.
Other authors noted a weak effect of residual
familial correlation on the power of association
tests as well [e.g., Shih and Whittemore, 2002].
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Fig. 4. As in Figure 1, except AR ¼ 0.1 and disease prevalence¼0.1.

TABLE II. Independent Cases and Controls: Sample-Size Requirements Using Additive Scores for Various Choices of
Marker Allele Frequencies for D0 ¼ 1; a ¼ 0:05; Power¼80%

Sample size for marker with pa
AR P(Y ¼ 1) Model pga 0.8 0.5 0.2 Sample size for disease gene

0.1 0.1 Additive 0.9596 1,315 4,938 19,430 311
Dominant 0.9581 1,402 5,299 20,885 330
Recessive 0.7136 937 1,321 4,966 593

0.1 0.01 Additive 0.9677 1,574 5,858 22,994 337
Dominant 0.9663 1,694 6,355 25,002 356
Recessive 0.7426 885 1,605 5,992 649

0.3 0.1 Additive 0.8586 149 501 1,907 109
Dominant 0.8364 186 666 2,585 151
Recessive 0.4519 912 219 520 179

0.3 0.01 Additive 0.8837 178 578 2,180 114
Dominant 0.8636 222 778 3,001 153
Recessive 0.4958 800 192 623 189

aNote that disease allele frequency is 1� pg.
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The sample sizes needed for the sibling case-
control design are known to be about twice as
large as those needed for the unmatched case-
control design for candidate genes [e.g., Witte
et al., 1999]. We computed the ratios of sample
sizes needed for the sibling case-control design to
those needed for the unmatched case-control
design with markers for sz ¼ 0; y ¼ 0; and various
scenarios covered in Figures 1–4. These ratios
were based on the use of additive scores, regard-
less of the actual mode of inheritance. For all
situations, the ratios were between 1.89–2.04, and
98% of the ratios were within 3% of 2.0. Thus,

when a marker is used instead of a candidate
gene, the sibling case-control design requires very
nearly twice as many subjects as the unmatched
case-control design.

SIMULATIONS

To assess the accuracy of the asymptotic
formulas, we simulated 10,000 replicates of out-
come data with the calculated sample sizes,
independently for various models. For each
replicate, the test statistic was calculated, and
the true power estimated as the proportion of

TABLE III. Independent Cases and Controls: Ratios of Sample-Size Requirements, Using Additive Scores Divided by
Those for Optimal Scores for Disease Gene, With a ¼ 0.05, Power¼80%

% maximum linkage disequilibrium

pg1 pa 30 40 50 60 70 80 90 100

AR ¼ 0.3, P(Y ¼ 1)¼0.01
Dominant model
0.86 0.8 0.954 0.974 0.994 1.013 1.030 1.049 1.066 1.083

0.5 0.718 0.736 0.754 0.773 0.791 0.810 0.830 0.851
0.2 0.358 0.367 0.376 0.386 0.396 0.406 0.416 0.427

Recessive model
0.50 0.8 0.415 0.441 0.468 0.494 0.520 0.546 0.571 0.597

0.5 0.833 0.892 0.956 1.020 1.093 1.168 1.251 1.333
0.2 0.945 0.966 0.987 1.010 1.034 1.060 1.087 1.117

AR ¼ 0.3, P(Y ¼ 1)¼0.1
Dominant model
0.84 0.8 0.961 0.983 1.006 1.026 1.047 1.066 1.085 1.107

0.5 0.724 0.743 0.763 0.784 0.804 0.826 0.847 0.871
0.2 0.361 0.371 0.381 0.392 0.403 0.414 0.425 0.438

Recessive model
0.45 0.8 0.403 0.427 0.450 0.473 0.496 0.519 0.542 0.564

0.5 0.808 0.859 0.910 0.966 1.021 1.080 1.145 1.210
0.2 0.946 0.967 0.989 1.012 1.036 1.062 1.088 1.116

AR ¼ 0.1, P(Y ¼ 1)¼0.01
Dominant model
0.97 0.8 0.907 0.913 0.919 0.925 0.931 0.936 0.942 0.947

0.5 0.680 0.685 0.689 0.694 0.699 0.703 0.708 0.713
0.2 0.340 0.342 0.344 0.346 0.349 0.351 0.353 0.356

Recessive model
0.74 0.8 0.637 0.749 0.862 0.978 1.095 1.212 1.330 1.448

0.5 0.866 0.938 1.013 1.091 1.172 1.256 1.345 1.437
0.2 0.953 0.975 0.998 1.022 1.046 1.070 1.096 1.122

AR ¼ 0.1, P(Y ¼ 1)¼0.1
Dominant model
0.96 0.8 0.909 0.915 0.921 0.928 0.934 0.940 0.946 0.952

0.5 0.681 0.686 0.691 0.696 0.701 0.706 0.711 0.717
0.2 0.340 0.343 0.345 0.348 0.350 0.353 0.355 0.358

Recessive model
0.71 0.8 0.596 0.693 0.793 0.894 0.998 1.103 1.208 1.314

0.5 0.867 0.940 1.016 1.094 1.176 1.262 1.350 1.442
0.2 0.953 0.976 0.999 1.022 1.046 1.071 1.096 1.122

1Note that disease allele frequency is 1�pg.
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replicates which were significant at a ¼ 0.05. The
empirical power estimates (not shown) indicated
excellent agreement with the expected power of 0.80.

DISCUSSION

We evaluated the sample-size requirements for
two-sided trend tests with additive scores applied
to marker genotypes, both for independent sam-
ples of cases and controls and for discordant sib-
pairs. We are unaware of previous studies of the
power of markers for these important designs.
The main factors influencing sample size, apart

from a-levels and relative risk parameters, are: 1)
the degree of agreement between the marker allele
and disease allele frequencies, which determines
the maximal linkage disequilibrium; 2) the percent
of maximal linkage disequilibrium present; and 3)
the attributable risk from the disease allele. Type
of inheritance also plays a role. For a fixed
attributable risk, disease prevalence, and in the
sibling case-control design, familial aggregation
other than that induced by the disease gene of
interest, and recombination have a much smaller
impact. Note that holding the attributable risk
fixed and letting the disease prevalence vary
changes the heritability of the disease, i.e., the
percentage of total variation explained by the
gene. As one reviewer pointed out, had we used a
different parameterization and held the recur-
rence risk, or equivalently, heritability, fixed, we
would have seen a strong impact of disease
prevalence on power. Previous work studying
the transmission disequilibrium test stressed the
importance of discrepant allele frequencies and
less-than-maximal D0 in inflating required sample
size [Abel and Müller-Myhsok, 1998; Tu and
Whittemore, 1999].
We found that additive scores applied to the

marker data can actually be more efficient than
dominant scores with dominant inheritance, or
recessive scores with recessive inheritance. Thus,
the use of additive scores, which do not require
knowing which marker allele is in positive linkage
disequilibrium with the putative disease allele,
may not be very inefficient, and can even be
advantageous in some settings.
A sobering implication of our work is that very

large sample sizes are required, especially with
modest attributable risks like AR ¼ 0.1 (Figs. 3, 4).
In this circumstance, studies with fewer than 10,
000 subjects have adequate power only if marker
alleles have frequencies near that of the disease

allele and attain at least 50% of the maximal
linkage disequilibrium. Figures 3 and 4 also
highlight the importance of using a marker whose
allele frequency matches that of the putative
disease allele frequency. Thus, several markers
should be examined in the region of a putative
disease locus, to increase the chances of finding
one with strong linkage disequilibrium. Required
sample sizes for sibling case-control designs are
about twice as large as for the unmatched case-
control design. For attributable risks of 0.3 (Figs.
1, 2), case-control studies with fewer than 10,000
subjects are required for broader ranges of
discrepancy in allele frequencies and less-than
maximal linkage disequilibrium.
The large sample-size requirements may partly

explain why many genetic associations based on
SNPs have not been confirmed in subsequent
studies [Hirschhorn et al., 2002]. The probability
that a statistically significant association is, in fact,
a true association, and not simply the result of
statistical noise, depends on the power of the test.
This probability is called the positive predictive
value [Vecchio, 1966]. For a given prior prob-
ability, lower power will result in a lower positive
predicitve value, contributing to the chance of
false-positive findings.
The two requirements that the marker allele

have a frequency close to that of the disease allele
and that it attain a substantial fraction of maximal
linkage disequilibrium may not be satisfied by
randomly selected SNPs within a candidate
region. To assure that some of the SNPs have an
allele frequency close to that of the putative
disease allele, the more common alleles of the
selected SNPs should have allele frequencies
covering the range 0.5–0.95. An alternative strat-
egy for selecting promising SNPs would be to
examine all functional alterations in the same
region. In this way, one might hope to find a
disease-producing locus within the region, rather
than simply a marker in linkage disequilibrium.
If the attributable risk for the locus under study

is correctly specified, a second unlinked disease
gene will have only minor impact on the required
sample size, as indicated by the results for s2z :
Although calculations in this paper focused on a

single marker, the calculations have implications
for other designs. For example, a whole-genome
scan with 106 SNPs would require a significance
level of 5 � 10�8 to assure experiment-wise control
of significance, based on the Bonferroni inequality.
As indicated in Statistical Methods, this would
require that the sample sizes be increased by
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a factor of 4.9 from those presented in this paper.
Likewise, one can adjust the a-level to accommo-
date screening of markers in a candidate region.
Schork [2002] calculated the power of an allele-

based (rather than genotype-based) test for inde-
pendent cases and controls, using a marker. He
used a Bayesian approach to integrate over the dis-
tributions of d and the marker allele frequencies.
We obtain similar sample-size requirements for
independent cases and controls with additive scores
when comparably high penetrances are assumed.
The sibling case-control design and related test

statistics were proposed as an alternative to case
parent trios for late-onset diseases [e.g., Curtis,
1997], and modified by several authors [e.g.,
Horvath and Laird, 1998]. Kaplan and Martin
[2001] presented power calculations for a class of
allele-based association tests in families with
genotyped parents and offspring. They assumed
complete linkage (y¼0) between the marker and
the disease locus, and determined optimal
weights for terms involving affected and unaf-
fected offspring. The sibling case-control design
with additive scores corresponds to a special case
called the weighted sibling transmission equili-
brium test (WSTDT). Kaplan and Martin [2001]
did not present numerical results on power and
sample size, however, nor did they present data
on the effect that d has on those quantities.
Lange and Laird [2002a, b] calculated the power

for familiy-based association tests (FBATs) based
on disease genes. Our score Ui for the sibling case-
control design corresponds to the numerator of an
FBAT statistic. Our normalization by an empirical
variance estimate (7) differs from the variance
estimators studied by Lange and Laird [2002a, b],
however, and their power calcuations are there-
fore not applicable to our statistic for the sibling
case-control design, even for the case of a disease
gene.
This paper focused exclusively on the evalua-

tion of one SNP at a time. Tests based on
genotypes or haplotypes from several SNPs may
reduce the sample sizes needed to detect associa-
tion [e.g., Fallin et al., 2001].
A MATLAB 6.1 program for sample size

calculations is available from the first author
(R.M.P.) upon request.
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APPENDIX

COMPUTATION OF MOMENTS OF SIBLING
CASE-CONTROL TEST STATISTIC UNDER H1

To find the power of the test statistic, we need to
evaluate the expected value and the variance of U
under both H0 and the alternative H1 conditionally
on Y¼1. Noting that the conditional expectation
can be rewritten iteratively as EY;XMjY¼1U ¼
EXMEY;Y¼ 1jXMU=PðY: ¼ 1Þ; where XM ¼ ðXM

1 ;XM
2 Þ;

andXD ¼ ðXD
1 ;X

D
2 Þ; we get

m ¼EXMðXM
1 � XM

2 ÞfPðY1 ¼ 1;Y2 ¼ 0jXMÞ
� PðY1 ¼ 0;Y2 ¼ 1jXMÞg=2PðY ¼ 1Þ: ð9Þ

Under the null hypothesis that XM is indepen-

dent of Y;PðY1;Y2jXMÞ ¼ PðY1;Y2Þ: Thus the term
in curly brackets in (9) can be pulled out of the
expectation, which results in EðXM

1 � XM
2 Þ ¼ 0;

and thus EU ¼ 0. Also note that under the model
(4) with b ¼ 0, the term in curly brackets vanishes
by exchangeability of Y1 and Y2. The denominator
is given by

PðY ¼ 1Þ ¼
X
XD

fPðY1 ¼ 1;Y2 ¼ 0jXDÞ

þ PðY1 ¼ 0;Y2 ¼ 1jXDÞgPðXDÞ:
The second moment of the score statistic is

computed likewise from

m2 ¼
1

4PðY ¼ 1ÞEXMfðXM
1 � XM

2 Þ2½PðY1 ¼ 1;

Y2 ¼ 0jXMÞ þ PðY1 ¼ 0;Y2 ¼ 1jXMÞ�g ð10Þ
which under H0 reduces to m2 ¼ 1

4EðXM
1 � XM

2 Þ2:
We use the empirical variance of the scores in
equation (7) to estimate the variance of U. Under
H1; V̂V0=N converges to s21 ¼ m2 � m2: Hence, the

power of the test jUV̂V�1=2
0 j4z1�a=2 can be

computed from equation (2) with s� ¼ s1:
We obtain the joint penetrance for the siblings

conditional on the marker loci from the assumed
conditional independence of marker and disease
status, given the disease gene and the random
familial effect a, as

PðY1;Y2jXMÞ ¼
X
Xg

Z
PðY1jz;XD

1 ÞPðY2jz;XD
2 Þ

� dFðzÞPðXDjXMÞ ð11Þ
where F denotes the distribution function of the
random familial effects. The terms PðYjz;XDÞ are
computed from the logistic model (4).
The joint probabilities PðXD;XMÞ; and hence

PðXDjXMÞ in (11), can be computed from the
probabilities of the joint genotypes P(M1, D1, M2,
D2) of siblings one and two, because the scores are
known functions of the genotypes. This computa-
tion is described next.

COMPUTATION OF JOINT GENOTYPE
PROBABILITIES FOR TWO SIBLINGS

For ease of exposition, let gi ¼ ðMi;DiÞ; i ¼ 1; 2;
denote the genotype at the marker and disease
locus for sibling i and let hi ¼ ðhim; hipÞ denote the
haplotype pair of sibling i; hi is comprised of the
maternal haplotype him and the paternal haplo-
type hip. Define the maternal haplotype pair hm ¼
ðh1m; h2mÞ and the paternal haplotype pair hp ¼
ðh1p; h2pÞ: Using conditional independence of the
haplotypes of the offspring given the parental haplo-
types, and independence of the parental haplo-
types, we compute the joint probabilities of
haplo-types of the siblings as

Pðh1;h2Þ ¼
X
hm;hp

Pðh1;h2jðhm;hpÞPðhm;hpÞ

¼
X
hm;hp

Pðh1; jhm;hpÞPðh2jhm;hpÞPðhmÞPðhpÞ
:

ð12Þ
The transmission function Pðhijhm;hpÞ ¼

PðhimjhmÞPðhipjhpÞ gives the probability that a
mother with haplotype pair hm and a father with
haplotype pair hP produce an offspring with
haplotype pair (him,|hip). The gametic transmis-
sion probabilities PðhimjhmÞ and PðhipjhpÞ are
simple functions of the factor 1/2 and the
recombination fraction for the two loci, y, and its
complement, 1 – y.
We assume that the probability of each parental

haplotype is determined by the allele frequency
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and the linkage disequilibrium coefficient. For
example, Pðh1m ¼ faggÞ ¼ PðgÞPðaÞ � d:
The joint sibling haplotype probabilities com-

puted from (12) define the joint sibling genotype
probabilities P(g1, g2). In fact, except for terms
involving doubly heterozygous genotypes P(g1,
g2)¼P(h1, h2) i.e., the genotype probabilities are
equal to the corresponding haplotype probabil-

ities. If the joint genotypes for one sibling are
doubly heterozygous, the joint genotype prob-
ability is obtained by summing over the corre-
sponding joint two-haplotype probabilities. If the
joint genotypes of both siblings are doubly
heterozygous, the joint genotype probability is
obtained by summing over the four joint haplo-
type probabilities.
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